
2021-2022 2DX3 Project Specification – Observe, Reason, Act:

Spatial Mapping using Time-of-Flight

Device Overview

There are many systems available to acquire data, however, equipment such as Commercial

Light Detection and Ranging (LIDAR) are found to be expensive and bulky [1]. Fortunately,

there are applications less expensive and smaller capable of acquiring the same set of data. The

embedded spatial measurement system using a time-of-flight sensor can easily acquire the

necessary information of any space.

Features:

• MSP432E401Y Microcontroller – A microcomputer operating at 120MHz used to

process, store, and execute information to perform programmed tasks. 32-bit Cortex M4F

• VL53L1X Time of Flight Sensor (ToF) – A device used to measure the distance of

nearby objects

• Stepper Motor & Driver– A rotary device mechanism with parameters that can be

controlled such as speed, angle, and direction

• Time of Flight Stepper Motor Mount – 3D printed mount to attach the ToF sensor to the

stepper motor

• Onboard Microcontroller Push Buttons (Reset & PJ1) – Push buttons built onto the

MSP432E401Y microcontroller to reset, start, and stop the device

• Keil Microcontroller Project Software in the C programming language – Programming

software to code instructions for the MSP432E401Y Microcontroller to follow.

• AD2 + Waveform Software – A circuit device analyzer with the software to display the

results of the measured frequency and bus speed of the system

• Python IDLE + Open3D – A PC Application to extract data from the ToF with the use of

serial communication (UART & Pyserial). Open3D to graphically map the distance

coordinates and display on the PC

• Universal Asynchronous Receiver/Transmitter (UART) communication – A

communication protocol that the MSP432E401Y Microcontroller uses to send and

receive date from 2 devices such as the ToF and a PC

• 60MHz Bus Speed

• ADC Sampling Rate: fsample >= fsignal

• 3.3V Operating Voltage

• 115200 Baud Rate (bps)

• LED D2 Status Tracker

• Approximate cost of $200 CAD (AD2 not included)

General Description:

A student designed 3D space scanner. This device/product is an embedded spatial measurement

system that gathers data from its nearby surroundings using a time-of-flight (ToF) sensor to

gather data from any given space and a stepper motor to provide a 360-degree measurement of

distance within a single vertical geometric plane. The data is then analyzed using a PC

application and graphically mapped and displayed.

Digital I/O are used to start/stop the system. Once the system begins, data can begin to be

collected by the ToF sensor. While the sensor acquires data, it is being rotated 360-degrees by

the stepper motor, collecting distance measurements at every 45-degree angle. The angle can be

changed for more precision. Once data has been allocated, the data can now be sent and

processed using Python by serial communication. UART is an inter-integrated circuit protocol

that sends received data from the microcontroller to Python via Pyserial. A Python program is

used to read the encoded data and writes it to a text file for further analysis. Now that data had

been stored to the PC, a program can extract the distance from the text file, calculate the yz

coordinates, manually generate the x coordinate and save theses mapping points into a xyz file

allowing the Open 3D to graphically map these coordinates and display a rough illustration of

the space.

Block Diagram:

The 3D Space Scanner Process

Product Image & PC Display:

Figure 1 - Complete Product Image

Figure 2 - 3D Space Scanner

Figure 3 - PC Display

Device Characteristics Table

Device Characteristic Specified Value

Bus Speed 60MHz

Digital I/O LED Status PN0 (LED D2 on microcontroller)

Microcontroller Pins PH0-PH3, PB2-PB3, 3.3V and GND

Stepper Motor Driver Pins IN1-IN4, + and -

Operating Voltage 3.3 V

Baud Rate 115200 bps

Python Software v.3.6-3.9 (v3.10 doesn’t work with Open3D)

Python Libraries & Packages Pyserial, Open 3D

Detailed Description

Distance Measurement:

To collect distance data, a ToF sensor is a device required to achieve this. The VL53L1X ToF

sensor is a laser-ranging sensor [2]. How the ToF works is that it measures how long it takes for

emitted pulses of light to reach the nearest object and be reflected to the detector. It emits pulses

of infrared laser light and signal reflects the nearest object in its path. Reflection is collected by

the ToF receiver and there is a time delay between the emitted and received periodic signal that

is measured [3]. Real applications for the ToF sensor include drones, service robots, vending

machines, and vacuum cleaners [2].

The 3-step process collecting and mapping the distance measurement includes acquisition,

transmission, and conversion. The first step, acquisition is where data is collected by the ToF

sensor. The components of this first stage are the microcontroller, the ToF sensor, the I2C

protocol as well as digital I/O buttons to start the system. The Inter-Integrated Circuit (I2C)

protocol is used to help 2 external devices communicate with and transfer data between each

other. These 2 devices are the microcontroller and the ToF. As the ToF collects data, the

microcontroller is receiving signals from the ToF. To begin data collection, an input is required

which is represented by the PJ1 push button. This button starts and stops the system using

interrupts. Once the microcontroller receives the ‘flag’ to begin running the program, it collects

all the data which for this device is 8 distance points for one 360-degree cycle. It does this until

another flag is raised which is where it will stop the program. This is implemented through

interrupts.

The second step is transmission. Now that data has been collected and it has been received by the

microcontroller, this data now must be transferred to the PC application for coordinate

conversion. To do this, a serial communication interface (SCI) is needed. The Universal

Asynchronous Receiver/Transmitter (UART) interface is implemented to receive and send data.

Many devices have the UART interface imbedded in their systems and so does the

MSP432E401Y microcontroller. Data coming from the ToF can be transmitted from point A to

B. Serial transmission involves sending one bit at a time. The total number of bits transmitted per

second is called the baud rate (bps) [4]. The baud rate for this system is 115200.

Lastly, once the data has been sent to a PC application (Python, Matlab, RealTerm etc), now the

data (distance measurements) can be converted into xyz coordinate points. Below are key

equations used to breakdown the distance measurement from the sensor into yz coordinates.

Based on the angle step, the y and z components are determined by taking the sine and cosine of

the distance as show in equations 1 and 2 below.

𝑦 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ cosθ (1)

𝑧 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑠𝑖𝑛𝜃 (2)

Now that, the distance has been broken into a 2D plane, the x coordinate is manually determined

to map a 3D model of the space. An example of the use of the formulas above is stated below.

Suppose a distance measurement was determined to be 355 mm at 135 degrees. To determine the

yz coordinate points in space, simply substitute 355 for the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 135 for θ and solve for

each of the 2 equations above. The answer yields that y = -251.02 mm and z = 251.02 mm. Next,

the x coordinate points can be chosen and set to repeat every 10 mm, generating multiple yz

slides and mapping a 3D model of the space. Therefore, a possible coordinate point for this

example could be (10, -251.02, 251.02).

Visualization:

To visualize the distance measurements collected, a PC and programming software is required.

For this product, a Yoga 7 Series Lenovo Laptop, Windows 11 operating system is used to

compute and process all the data received from the microcontroller and ToF using Keil and

Python v.3.9. programming software.

Obtaining visualized data requires certain packages to be installed into PC system. Once Python

has been installed, simply import the Pyserial package using the following command,

pip install pyserial

to give the PC application the ability to communicate with the ToF based on serial

communication. Specified Python code is used to decode and extract the data sent by the UART

which is then stored into an empty text file. From that, the distance can be extracted from the text

file and analyzed to determine y-z coordinate points using trigonometric equations. For the x

coordinate, this can be manually specified.

Next, the xyz coordinates must be transferred into an xyz file, which the functions for 3D

mapping imported with Open3D can be used to visualize the data. The command to import

Open3D is

pip install open3d

Rough Dimensioned Sketch:

Figure 4 - 3D Space Visual

Application Example with Expected Output

1. Begin by loading the C program code on to the microcontroller

2. Run the module of the Python code

3. Reset the microcontroller and hit ‘Enter’ on the PC

4. A “Please Wait” message will appear and once “SensorInt Successful” is displayed, push

the onboard PJ1 button

5. The ToF will begin to rotate and pause at every 45 degrees to collect the distance

measurement. Press the PJ1 button to stop the rotation if desired.

6. As data is being collected, data is being displayed. 8 distance measurements in total

should be displayed at the end of one full rotation. Simultaneously, this data is being

written to a text file (captureDistance.txt).

7. Next, each line of the text file is read and analyzed using strip() and split() Python

functions to extract the distance measurement only.

8. Taking the distance, the y and z coordinates are determined in Python using trigonometry

(see equations 1 & 2) and is written to an xyz file.

9. For the x coordinate, the values are manually determined, increasing by 40 mm all 8

distance points 10 times.

10. Once xyz coordinates are determined and written to an array in the xyz file, the values are

plotted using the open3d visualization function.

11. The function should graphically plot all 80 points (8*10) in 3D space

12. Finally connect the lines off all coordinate points and a rough dimensioned illustration of

the space is displayed as shown in Figure 4.

13. The program ends and can be restarted again, starting from step 2.

Brief Users Guide

To get this project up and running, begin by acquiring all components (listed in features) needed

for the project. Assemble these components and install the necessary software used in this

project.

To assemble the physical components, refer to the circuit schematic for all the pin/port

connection between all device components of this product (Figure 5 & 6). Ensure the USB cable

along with the microcontroller is plugged into your PC. Have pins PH0-PH3 connected to the

IN1-IN4 respectively on the stepper motor driver. Supply power to the stepper motor module by

connecting 3.3V and GND from the microcontroller to pins on the stepper motor driver labelled

‘+’ and ‘–’ (5-12V). Then, proceed to connect pin PB2 on the microcontroller to SCL on the ToF

and PB3 to SDA. Supply a voltage of 3.3V from the microcontroller to VIN on the ToF. Any pin

labelled 3.3V will equally work. Ground the ToF by connecting GND to any pin labelled GND

on the microcontroller. Once this is complete, there should be 10 wires connected to the

microcontroller, 6 wires connected to the stepper motor module and a USB cable connected to

the microcontroller, plugged into your PC. Finally, connect the grouped wires of the stepper

motor to the stepper motor driver (Figure 6).

Assuming the correct code is provided, begin to set the device specific characteristics values in

the Python file. For the microcontroller to communicate with Python, the port for which the

microcontroller is connected to your PC needs to be acknowledged by Python in order to receive

the encoded data. Using the command below in command prompt will return the user UART port

code for which will need to be defined in the Python code.

python -m serial.tools.list_ports -v

The screenshot below should be the expected output. Look for what reads “XDS110 Class

Application/User UART (COM#)” and the COM port should be displayed.

Record your PC specific port code and return to the Python code and update the port code on line

14 seen below. Set the baud rate to 115200 and a timeout of 10 in the same line.

If not done already, import or install all necessary packages. Below are the required packages to

install and import and their respective commands to type into your command prompt.

Command Prompt Commands

Pyserial (import serial) → pip install pyserial

Open3D (import open3d) → pip install open3d

To check you have installed these packages correctly, open your installed Python version (shell)

and type ‘import serial’ and ‘import open3d’ and press enter. The packages have successfully

been installed if nothing follows the command as shown below.

Now, the device is ready to be used. Be sure to acknowledge where the reset and PJ1 buttons are

on the microcontroller. Refer to the microcontroller circuit schematic (Figure 6) for where to

locate the buttons.

Open your Keil Project and load the program onto your microcontroller. Go over to Python at the

top and click ‘Run’ then on the drop down, click ‘Run Module’. A new shell window should

open, and the following message should be displayed.

Before hitting enter, reset your microcontroller at this time then proceed to hit enter on your PC.

The following should be displayed.

At this point, patiently wait for the ToF to be ready and once ‘SensorInt Successful’ is displayed,

go ahead, and push the PJ1 button on the microcontroller and the rotation of the stepper motor

and the collection of data by the ToF sensor should begin and synchronously display the distance

on the Python console.

Limitations

1. Summarize any limitations of the microcontroller floating point capability and use

of trigonometric functions: The Floating-Point Unit (FPU) provides conversions

between fixed-point and floating-point data formats, and floating-point constant

instructions, more specifically, 32-bits instructions for single-precision (C float) data-

processing operations [5]. Python receives distance values as integers. Trigonometric

functions were implemented in the Python file by importing the math Python library

(import math). Performing trigonometry by using sine and cosine functions from the

math library did not cause any limitations since casting an integer as a float is possible in

Python.

2. Calculate your maximum quantization error for each of the ToF module: The

maximum quantization error is the ranging error from the datasheet with a value of 20mm

to 25mm.

3. What is the maximum standard serial communication rate you can implement with

the PC. How did you verify? The maximum standard serial communication rate to

implement with the PC is 128000 bps. To verify this, navigate to the PC Device Manager

and select ‘Ports (COM & LPT)’. Right click on the ‘XDS110 Class Application/User

UART COM#’ and select ‘Properties’ and then click ‘Port Settings’. There you can see

the ‘Bits per second’ drop down. All the available baud rates are displayed, and the

largest baud rating is identified as the maximum standard serial communication rate you

can implement with the PC.

4. What were the communication methods and speed used between the microcontroller

and the ToF modules? I2C (UART) serial communication protocol with a speed of

100kbps to transfer data.

5. Which element is the primary limitation on speed? How did you test this? The

element that primarily limits the speed is PSYSDIV variable. Below is a waveform of the

120MHz and 60MHz (device specific clock speed) bus frequency. PSYSDIV was

changed from 3 (120MHz) to 7 (60MHz) and the period was reflected in the output on

the waveform. Since the frequency decreased by 50% the period is expected to double.

Circuit Schematic

Figure 5 - ToF to Microcontroller Circuit Schematic

Figure 6 - Microcontroller to Stepper Motor Circuit Schematic

PH2

PH3

PH0

PH1

PB2

PB3

3V3

GND

3V3

GND

Programming Logic Flowcharts

Figure 6 - Keil C Program Flowchart Figure 7 - Python Program Flowchart

References

[1] “2021_2022 _2DX3_2DX4_Project_Specification” class notes for 2DX3, Department of

Engineering, McMaster University, Winter, 2022.

[2] “vl53l1x” class notes for 2DX3, Department of Engineering, McMaster University, Winter,

2022.

[3] “Week 6 – Implementing Signal Transfer Functions & Calibration” class notes for 2DX3,

Department of Engineering, McMaster University, Winter, 2022.

[4] “Week 7 – Communication Protocols” class notes for 2DX3, Department of Engineering,

McMaster University, Winter, 2022.

[5] “MSP432E401Y datasheet | TI.com,” Ti.com, 2017. https://www.ti.com/document-

viewer/MSP432E401Y/datasheet/device-characteristics#t95624825 (accessed Apr. 12, 2022).

